Principal Component Analysis in Topic Modelling of Short Text Document Collections
نویسندگان
چکیده
This paper presents the motivation for and the preliminary theoretical investigations of the PhD project by the first author. The objective of the research is to propose and to experimentally verify the approach of application of eigendecomposition in principal component analysis for topic modelling of short text document collections. The main hypothesis examined in this project, is that principal component analysis applied to word co-occurrence statistics turns topic modelling into well-defined problem having unique solution with natural fitting parameters. The project is performed at the Dept. of Computer Science of Zaporizhzhya National University.
منابع مشابه
Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملDocument clustering using nonnegative matrix factorization q
A methodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal compon...
متن کاملDocument clustering using nonnegative matrix factorization
Amethodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal compone...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017